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that these distributions will have the potential to yield 
reliable estimates for the four-phase structure sem- 
invariants (ah + (ak + (a~ + (am, i.e. that many of the distri- 
butions will have a very small variance. However, 
comparison of the different rows of Table 5 reveals 
significant contradictions. It is therefore not recom- 
mended that the conditional probability distribution of 
(ah + (ak + (a| + (am, given all 24 magnitudes in its second 
neighborhood, be derived. Although the 24-magnitude 
estimate may be somewhat superior to the 12 or the 
three 16-magnitude estimates, it is anticipated that the 
improvement will be at best marginal and hardly worth 
the additional effort to derive or the time to calculate. 

VI. Concluding remarks 

The first two neighborhoods of each of the structure 
seminvariants, (ah, ~h + (ak, (ah + (ak + (al, (ah "3V (ak "t- (al 71- ~m, 
in the space group PT have been found. In this way 
those magnitudes are identified on which the value of 
the structure seminvariant chiefly depends, and the 
qualitative relation between the seminvariant and the 
magnitudes in the appropriate neighborhood (or sub- 
set) is derived. The task of determining the more 
precise relation, i.e. the conditional probability distri- 
bution of the structure seminvariant, given the magni- 
tudes in the neighborhood, or an appropriate subset, 
remains to be completed. For the structure seminvari- 
ants (ah + (ak this task has been done for the first neigh- 
borhood and is described in the accompanying paper 
(Green & Hauptman, 1976). In view of this work it is 

anticipated that the remaining task, though time con- 
suming, will not present insurmountable obstacles. 

Next, there remains the problem of identifying the 
neighborhoods of the structure seminvariants in other 
space groups, in particular P21 and P2x2121. It is antici- 
pated that the methods described here will carry over to 
these space groups without essential change. Once this 
is done the derivation of the appropriate probability 
distributions in these space groups is called for. In 
view of our limited experience, it seems impossible to 
evaluate now the magnitude or difficulty of this task 
or the extent to which present methods, successful in 
the space groups P1 and P] ,  will be applicable to the 
remaining space groups. However, some preliminary 
work along these lines suggests that the task will not 
present insuperable difficulties. 

This research was supported by NSF Grant No. 
MPS73-04992. 
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A crystal structure in P1 consisting of N identical atoms in the whole unit cell is fixed, and the four 
non-negative numbers R1,R2,R12/2,Rl~/2 are also specified. The random variables (vectors) h,k are 
assumed to be uniformly and independently distributed in the regions of reciprocal space defined by 
IEhl = Rx, IEkl -- R2, IEch+ k)/2l : R12/2, IE¢h-k/2)l = Rt~/2 ,  (1), and h+ k = 0 (mod ~s), (2), where o~s, the sem- 
invariant modulus for P i ,  is the three-dimensional vector o~= (2, 2, 2), (3). Then the components of 
each of (h + k)/2 are integers. In view of (2) and (3) the linear combination of the phases (a = ~0h + tpk, (4), 
is a structure seminvariant which, as a function of the primitive random variables h, k, is itself a random 
variable. Two approximations Q±,P±, of respective orders l/N, 1IN 2, to the conditional probability 
distribution of ~0, given the four magnitudes (I), are derived and compared. In favorable cases, i.e. when 
the variance of the distribution happens to be small, they yield a reliable estimate (0 or 7r) for the 
structure seminvariant (¢. 

I. Introduction 

Recently secured methods in the probabilistic theory 
of the structure invariants (Hauptman, 1975a, b; 
Green & Hauptman, 1976; Hauptman & Green, 

1976) are applied here to the determination of the 
conditional distribution of the two-phase structure 
seminvariant 

= ~h + ~k (1.1) 
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in the space group P ]  which is based on the first neigh- 
borhood of ¢. As anticipated in this earlier work and 
described at greater length in the previous paper 
(Hauptman, 1976), the neighborhood concept is seen 
to play the central role in the probabilistic theory of 
the structure seminvariants, just as it did for the struc- 
ture invariants. 

The seminvariant modulus cos in the space group P ]  
is defined by means of 

0 , = ( 2 , 2 , 2 ) .  (1.2) 

Then (p (1.1) is a structure seminvariant if and only if 

h + k - - 0  (mod o~,), (1.3) 

i.e. if and only if the three components of h + k are even 
integers. As shown in the previous paper (Hauptman, 
1976), the first neighborhood of ¢ consists of the four 
magnitudes 

IEhl, lEkl, lE(h+k)12l,iE(h-k)121, (1.4) 

where, in view of (1.3), Ca + k)/2 both have integer com- 
ponents. In this way one is led to investigate the joint 
probability distribution described in the following 
section. 

Only the major results are cited in this paper and it 
is assumed that the reader is familiar with earlier work 
(Hauptman, 1975a, b; Green & Hauptman, 1976; 
Hauptman & Green, 1976). However, the long Appen- 
dix I contains complete details of the derivations.* 

II. The joint probability distribution of the four 
structure factors Eh, Ek, E(h+li)/2, E(h-li)/2 

The present paper is heavily dependent on the previous 
work (Hauptman, 1975a, b; Green & Hauptman, 1976; 
Hauptman & Green, 1976) and the assumptions made 
here are the same as those described earlier. Thus, a 
crystal structure in P] ,  consisting of N identical atoms 
in the unit cell, is supposed to be fixed. The twofold 
Cartesian product IV x IV of reciprocal space W is 
defined to be the collection of all ordered pairs Ca, k) 
where h and k are reciprocal vectors. The ordered pair 
Ca, k) is assumed to be the primitive random variable 
uniformly distributed over the subset of IV x IV defined 
by (1.3). Note that h and k, the components of Ca, k), 

recip- are therefore not independently distributed in 
rocal space. Then the four structure factors 

Eh, Ek, E{h + k)/2, E<h- k)/2, (2.1) 

as functions of the primitive random variables h, k, are 
themselves random variables. Denote by 

P =  P(S~, S2, S12/2 , SI~,/2) (2.2) 

* Appendix I has been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 
31891 (41 pp., 1 microfiche). Copies may be obtained through 
The Executive Secretary, International Union of Crystallog- 
raphy, 13 White Friars, Chester C H 1 1 N Z ,  England; or 
from the authors as a technical report of the Medical Founda- 
tion of Buffalo. 

the joint probability distribution of the four structure 
factors (2.1) which, because the space group is P]', are 
all real. Then, following the methods described in the 
earlier work already referred to, it is found that 

1 [ 13 
P = ~ exp -½(S~2+S2-1-S12/22 2 + S1~/12 _ 8 N  

1 (s~+s~ 2 1 (5S2 + 5S22 + 7Sf2/2 + 7S2~./2)- +--y 

..1_S42/2.3t_ 4 2 2 2 2 2 2 S1]12 "{- 4S1Si2/2 + 4S1S1212 + 4S2S1212 

2 2 2 2 + 4S~Si~/2 + 8S12/2S1~/2) .it. N1/2 

S2S12]281~/2 S1S2S22]2 S1S2SI]]  
N u2 2N 2N 

S~1S1212S1~/2 3 3S1S~i2s2S12/2 S2S12/2S12/2 
+ ....... N31U ..... + ................ N3/2 ............ + 2-~[-312 ..... 

3 3 3S1S1212S1~/2 3S281212S1~12 3S2S1212S~t~/2 
2N3/2 + 2N3/2 + 

2 
5S1S12/2S12/2 -- 552S12/2S12/2 -Jt- S152512/2512/2 

N3/2 N3/2 N3/2 

2 S1S~S12/2 S1S~S12/2S1~/2 S~1S2S22/2 3 2 
N3/2 2 N  2 2N 2 

2 2 2 2 
SiS~281~12 ~S~S~12 5S152S121251~/2 

2N 2 2N 2 N 2 

5s1s2s~2/2 5s, s~s~/2 11s~$2s22/2 
-- 6N 2 - 6N 2 + ........... ~-N- 2 

+ .... 4-~ ~- ........... + 16N 2 ] 

where O(1/N 2) denotes terms of order 1/N 2 or higher 
in which terms of order 1/N 2 contain only even powers 
of the S's. Observe that the S variables of (2.3) range 
over all real values from - oo to + co. The distribution 
(2.3) leads directly to the joint conditional probability 
distribution of the pair {Oh, 9k, given the magnitudes of 
the four structure factors (2.1), as is shown next. 

flI. The joint conditional probability distribution of the 
pair of phases ~h, {Ok, given the four magnitudes 

IE4, IEkl, IE<h+k,21, Ieh-~,,21 
Suppose again that a crystal structure consisting of N 
identical atoms per unit cell in the space group P1 is 
fixed and the four non-negative numbers Rx, R2,R1212, 
RI~I2 are also specified. Assume now that the ordered 
pair (h,k) of reciprocal vectors is a random variable 
which is uniformly distributed over the subset of the 
Cartesian product lV x IV defined by 

IEhl = Rt, ]Ekl = R2, IE(h + k)/2l = R12/2, Ig¢h-k)lZ[ = Rl~/2 
(3.1) 

and (1.3). In view of (3.1) and (1.3), the random vari- 
ables h,k, the components of the ordered pair Ca, k), 
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are not independently distributed in reciprocal space. 
Then (Ph and ~0k, the phases of the normalized structure 
factors Eh and Eu, as functions of the primitive random 
variables h and k, are themselves random variables. 
Denote by P(c~I,¢2IR~,Rz, R~2/2,R~/2 ) the joint con- 
ditional probability distribution of the two phases, 
tph, tpk, given (3.1) and (1.3). Then P(¢~, ~21RI, R2, R~2/2, 
R~/2) is found from (2.3) by fixing the magnitudes of 
S~, $2, $12/2, Sx~/2 in accordance with the scheme 

1811 = R1, I&l = R~, IS, znl = R,z/z, IS,=/~I = R,~/2 , (3.2) 

i.e. 

S~ =R~ cos qh, Sz= Rz cos Cz, 
812/2 = R12/2 COS ~1212, $1212: RI]/2 COS (/)12./2 , (3.3) 

where ~12/2 and ¢~/2 are the variables associated with 
the phases ¢P(h+k)/2 and ~P(h-k)/2 respectively, summing 
with respect to Saz/z, S~/2 over their two possible signs 
(+  and - )  or, equivalently, summing with respect to 
¢~2/2, ¢x~/2 over their two possible values (0 and re), and 
multiplying the result by a suitable normalizing factor. 
Carrying out these summations one finally obtains, 
correct up to and including terms of order I/N 2 [since 
O(1/N 2) of (2.3) consists of all terms of order 1/N 2 or 
higher in which the terms of order 1IN 2 contain only 
even powers of S], 

P (¢ , ,  ¢2[R1, Rz, Rx2/2, Rl~/z) 

1 { R t R z c o s ( ¢ I + ¢ 2 ) [ (  11)  
" -~- exp - N ½-  

1 (R~ + R2 z) (R~2/2 + R~/2) × (R~/~ + Rh/~) + ~-U 

5 ,]} 6R12/2Rl~/2 + + _6__~_ (R4/2 + 2 2 R4/z)+ -16N 

{ R12/2Rl~/2 
x cosh N1/2 (R~ cos ¢1 + R2 cos bE) 

x 1 + -~ (R~ + R~) + T f f  (RI~/~ + R~/~)- 

(3.4) 

IV. The conditional probability distribution of  the 
structure seminvariant 9 = ~0h + 9k, given the four 

magnitudes IEhl, IEkl, [E(h+k)/2[, [E(h-k)/2[ 

Under the same hypotheses as in §3, the structure 
seminvariant 

9 = (Ph + (Ok (4" 1) 

is a random variable whose conditional probability 
distribution, given (3.1), P(qb[R1, R2, Ra2/2, Rll/2), is 
readily found from (3.4). Thus, correct up to and in- 
cluding terms of order 1IN 2, the major result of this 
paper is given by 

P ( ¢IR1, R2, R12/2, Rl~./2) 

1 
~_ ~-  exp ( -  C cos ¢)  cosh [D(R1 + R2 cos q0] (4.2) 

where 

C _  RIR2 [( 11)  
2N 1 - -2N- (R22/2 + R22/2) 

l (RE + + R z) 2 2 + ~ (R~2/2 + Rm2) 

5 1] 6R12/2Rl]/2 + R4~/2) + - ~  + ~ (R42/2 + 2 2 , (4.3) 

R12/2Rl]/2 [ 1 
D -  NU 2 1 + -N (R~ + RE) 

3 2 2 -N ] a + ~ (R~2/2+R~/2)- 5 , (4.4) 

and 

L = exp ( - C) cosh [D(R1 + R2)] 
+exp (C) cosh [D(R~-R2)]. (4.5) 

If one denotes by P+ (P_) the conditional probability, 
given (3.1), that 

or that 

or that 

~0=gh + g k = 0  (zr), (4.6) 

COS Cp= + 1 (-- 1), (4.7) 

EhEk be positive (negative), (4.8) 

where K is a suitable normalizing constant, inde- 
pendent of ~, and ¢2. Although K is readily found by 
summing (3.4) over the four possible values of q~l, ~2 
(each takes on the two values 0, re) and setting the result 
equal to unity, the value of this normalizing parameter 
is not needed for the present purpose and is therefore 
not derived explicitly. Although (3.4) depends on the 
values of ¢ ,  and ¢2, it is readily confirmed that it 
actually is a function of ¢1 + q~2 only, since [cos qhl = 
[cos ~b21 = 1 and the hyperbolic cosine is an even func- 
tion of its argument. Hence (3.4) leads directly to the 
conditional distribution, given (3.1) and (1.3), of the 
sum 9 = ~0h + ~0k, as is shown next. 

then (4.2) is replaced by the more suggestive 

I 
P+ -~ L exp (T- C) cosh [D(RI +_ Rz)] (4.9) 

where C, D and L are given by (4.3)-(4.5) and the upper 
(lower) signs go together. 

If one retains terms out to 1/N only, then (4.9) 
reduces to 

1 [ 2 2 ]  RIRz( R12/2 + Rl~/2) 
Q ± _~ -~- exp -T- 2N  

[ R,~/,R,~/2(R1 +_ R~) ] 
xcosh [ ~ ] , (4.10) 
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where 

M = exp [ -  R1R2(R22/22N + R22/2) ] 

x c o s h  [ R12/2RI2/2(R1N1/2 -+- R2) ] 

+ exp [ + R1R2(R22/22N + R22/2) ] 
x cosh [ Rlz/zRli/2(RaN 1/2 - Rl) .] , 

, [ 2 2 ]  R1R2(R12/2 "[- R12"/2) (4.13) 
Q + "~ - ~  exp ~ 2N ' 

[ 2 2 ] 
M = 2  cosh R1R2(R12/2+R12/2). (4.14) 

2N 

so that, in this special case, Q + < ½, ~ is probably equal 
to 7~, and the larger the value of  1/2NR~R2(R22/2+ 
R2~/2) the more likely it is that (0= 7r. Thus the results 
obtained here bear out the qualitative prediction made 

(4.11) in the previous paper (Hauptman, 1976). 

which should be compared with (3.3) of  an earlier V. The applications 
paper (Hauptman & Green, 1976). Equation (4.10) A crystal structure in P ]  consisting of  N = 9 0  identical 
shows that if R~2/2 and Rn/2 are both large then Q + > ½ atoms in the unit cell was constructed [the same as in a 
and (p is probably equal to 0. If, on the other hand, one previous paper (Hauptman & Green, 1976)] and 6701 
of  R12/2, R~/2 is large and the other small then Q + < ½ normalized structure factors Eh calculated. Using the 
as shown next. 299 IEl's greater than 2 (i.e. IEhl > 2, lEvi > 2), the 237 

pairs h,k satisfying (1.3) and having the largest pro- 
IV. 1. The case that R12/2Rl~/2~_O ducts IE.E~I were found. The 237 values of  each of  

In the case that P+,Q+, equations (4.9) and (4.10) respectively, and 
the standard deviation a of (4.9), 

I E(h + k)/2E(h- k)/2] -~ R12/2R12/2 ~" O, (4.12) 

then (4.10) and (4.11) reduce to ,,=21/(e+e_), (5.1) 

Table 1 .50 values of P+(GHR), Q+,P+ for a structure in P-1 with N = 9 0  atoms in the unit cell, arranged in 
ascending order of the standard deviation (5.1) (SIG) 

Ind ices  of Main Terms Observed Hagnitudes , IEI 

1 5 -16 3 11 -4 -3 3.00 2.24 3.68 2.95 0.993 0.964 0.986 0.999 0.227 
2 7 -I0 4 5 6 -I0 2.49 2.44 3.00 3.29 0.988 0.956 0.983 0.999 0.251 
3 2 7 -8 4 -9 6 4.17 3.06 2.67 3.29 0.996 0.952 0.979 1.000 0.281 
4 3 -4 -i0 9 0 4 2.57 2.36 3.00 3.10 0.984 0.946 0.977 0.999 0.295 
5 4 -6 8 i0 -6 6 2.81 2.08 3.36 2.99 0.985 0.947 0.976 0.999 0.300 
6 2 -11 0 4 13 0 3.46 2.40 2.61 3.66 0.991 0.945 0.975 0.999 0.311 
7 2 8 -8 4 -8 6 2.38 2.02 2.99 3.29 0.977 0.939 0.973 0.999 0.321 
8 13 -9  -2  7 -7  0 3.15 2.10 3.80 2.67 0.987 0.942 0.973 -1 .000  0.323 
9 1 3 - 1  1 1 3 7 2 . 3 4  2 .06  3 .12  3 .00  0 .973 0 .931 0 .968 - 1 . 0 0 0 0 . 3 5 0  

10 5 -11  0 11 -9  0 2.77 2.00 3.68 2.61 0.979 0.931 0.967 1.000 0.356 
11 6 -3  -7  6 5 7 2.57 2 . -9  3.44 2.45 0.978 0.926 0.966 1.000 0.360 
12 1 12 0 5 -I0 0 3.66 2.28 2.61 3.46 0.986 0.926 0.959 0.999 0.392 
13 6 -6 7 i0 -4 7 3.57 2.49 3.06 2.58 0.981 0.917 0.955 1.000 0.410 
14 3 -3 -8 9 -3 -i0 2.91 2.15 2.77 2.99 0.97~ 0.914 ~.953 1.000 0.420 
15 2 7 -9 4 -9 5 2.79 2.14 2.53 3.29 0.969 0.911 0.952 1.000 0.423 
16 3 4 8 3 -4  -i0 2.73 2.57 2.99 2.51 0.97~ 0.908 0.952 0.999 0.424 
17 7 -6 7 5 "10 -7 3.36 2.94 2.06 3.29 0.976 0.890 0.944 0.999 0.458 
18 1 ii 0 Ii -9 0 2.76 2.00 3.44 2.28 0.95~ 0.882 0.931 1.000 0.506 
19 8 -i0 0 2 -12 0 3.68 2.33 2.77 2.61 0.968 0.886 0.929 1.000 0.511 
20 4 -9 6 i0 -ii 2 3.06 2.77 2.49 2.53 0.959 0.877 0.929 1.000 0.512 
21 1 -i0 0 5 i0 -2 2.20 2.15 2.99 2,51 0.940 0.875 0.925 1.000 0.525 
22 2 7 -8 I0 -II 2 4.17 2.77 3.00 2.14 0.973 0.866 0.918 1.000 0.546 
23 5 -6 7 1 6 -9 3.02 2.18 2.99 2.30 0.948 0.866 0.915 1.000 0.556 
24 2 10 7 4 -6  7 2.46 2.00 3.10 2.35 0.935 0.863 0.914 1.000 0.559 
25 5 0 6 9 0 4 3.04 2.36 4.25 1.73 0.966 0.843 0.911 0.999 0.568 
26 5 -11 0 1 11 0 2 . 7 7  2.76 1.79 3.46 0 . 9 4 8  0 . 8 3 6  0 . 9 0 1  1 . 0 0 0  0.595 
27 4 14 0 2 -12 0 2 . 6 9  2.33 2.61 2.40 0 . 9 3 0  0 . 8 4 8  0 . 9 0 0  1 . 0 0 0  0.599 
28 4 2 7 0 4 7 2 . 6 2  2.45 2.41 2.55 0 . 9 2 9  0 . 8 4 6  0 . 8 9 9  -1.000 0.601 
29 5 -11 0 i 13 0 2 . 7 7  2.40 2.61 2.33 0 . 9 3 0  0 .844  0 . 8 9 7  1 . 0 0 0  0.606 
30 3 0 -1 9 -2 -5 2 . 9 9  2.67 2.24 2.53 0 . 9 3 4  0 . 8 3 9  0 . 8 9 5  1 . 0 0 0  0.611 
31 2 3 7 2 -5 -7 2 . 4 1  2.18 2.55 2.45 0 . 9 1 0  0 . 8 3 0  0 .882  -1.000 0.643 
32 2 14 3 6 14 -1 2 . 4 5  2.31 2.35 2.55 0 . 9 0 9  0 . 8 2 5  0 . 8 7 8  1 . 0 0 0  0.653 
33 4 11 -i 10 9 -5 3.02 2.44 2.19 2.53 0.919 0.820 0.876 1.000 0.658 
34 7 -6 7 5 -6 7 3.36 3.02 3.57 0.17 0.519 0.203 0.132 -I.000 0.678 
35 1 -14 1 3 -8 -I 2.28 2.05 3.46 1.85 0.901 0.804 0.867 1.000 0.678 
36 2 -i0 -3 8 8 -5 2.20 2.14 2.39 2.56 0.891 0.812 0.864 1.000 0.683 
37 3 i 0 9 I 0 2.61 2.04 3.44 1.79 0.905 0.797 0.859 1.000 0.694 
38 8 -i0 0 4 14 0 3.68 2.69 2.06 2.33 0.917 0.793 0.855 1.000 0.703 
39 1 9 -7 ii -5 7 3.54 2.39 2.06 2.51 0.912 0.795 0.852 0.999 0.709 
40 0 4 9 6 2 5 2.51 2.06 2.26 2.53 0.883 0.797 0.848 0.999 0.716 
41 5 -3 8 3 -7 6 2.99 2.08 4.18 1.57 0.932 0.777 0.847 -1.000 0.719 
42 2 -11 0 2 -13 -2 3.46 2.35 3.70 0.02 0.500 0.225 0.153 -1.000 0.720 
43 6 1 0 8 -15  0 3.44 2.44 2.10 2.35 0.902 0.786 0.844 0.999 0.725 
44 i 5 -i0 3 9 -6 2.54 2.42 4.17 0.07 0.502 0.235 0.162 -i.000 0.737 
45 i 13 n 11 -9 0 2.40 2.00 2.06 2.77 0.872 0.784 0.837 1.000 0.738 
46 6 -15 1 0 13 -5 2.56 2.05 2.53 2.18 0.875 0.785 0.836 1.000 0.739 
47 7 -11 0 11 -9  0 2.07 2.00 2.25 2.58 0.839 0.780 0.830 1.000 0.749 
48 4 14 0 8 12 0 2.69 2.08 2.04 2.55 0.865 0.769 0.821 1.000 0.766 
49 2 6 7 8 -10  5 3.33 2.09 2.45 2.05 0.878 0.766 0.818 1.000 0.770 
50 I0 -5 -I 8 -15 I 3.26 2.56 3.68 0.24 0.533 0.245 0.181 -i.000 0.771 

A C 32A - 2 
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were calculated, and the first 50 of these, arranged in 
ascending order of the standard deviation (SIG), are 
shown in Table 1. The column headed COS (T) lists 
the true values of cos ~0. Each entry in the column 
headed P+ (GHR) is the probability that cos ~0 = 1 as 
obtained by Grant, Howells & Rogers (1957) who 
employed the conditional probability distributions of 
the two three-phase structure invariants 

~0 h "{- ~0 _ (h + k) /2 "~- ~0 _ (h - k ) /2  (5.2) 
~ k  Jr- ~ -- (h  + k/2 -~ (P(h - k)/2 (5.3) 

and, assuming independence, derived their P+ (GHR) 
from these, 

[ R1Rt2/2R12/2 
P+ (GHR)=½ [1 + tanh k N -t~ ) 

tanh (RzR12/2R12/2 NI/2 ) ] .  (5.4) × 

Inspection of Table 1 shows first that, when a is 
small, 

P+ (GHR)>P+ > Q+ >0.5 (5.5) 
o r  

P+ (GHR)>0.5> Q+ > P + .  (5.6) 

Comparison with the true cosine values shows further 
that P+(GHR) has a small positive bias, i.e. P+ (GHR) 
is too large. In fact, since 

P+ (GHR)>½, (5.7) 

this distribution is not able to identify the negative 
cosines. The distribution Q+, on the other hand, not 
only reliably identifies many cosines, which are in fact 
positive, but its negative indications are quite reliable 
and the positive bias is virtually eliminated. Compari- 
son of P+ with COS (T) shows P+ to be essentially 
unbiased, and its negative indications are most reliable. 
The comparison of P÷ (GHR)with Q+ and P÷ clearly 
shows how risky it may be to assume independence 
when not justified and the improvement which results 
from the ability to take into account all correlations 
among the structure factors. 

Comparison of the present Table 1 with Table 1 of an 
earlier paper (Hauptman & Green, 1976), shows that 
the second (seven-magnitude) neighborhood of the four- 
phase structure invariant is more useful in the applica- 
tions than the first (four-magnitude) neighborhood of the 

two-phase structure seminvariant described here. This 
result is not surprising since one naturally anticipates 
that the seven-magnitude neighborhood contains more 
information than the four-magnitude neighborhood 
in accordance with the principle of nested neighbor- 
hoods recently formulated (Hauptman, 1975). Never- 
theless, the present Table 1 does yield reliable estimates 
for a few of the two-phase structure seminvariants 
(particularly those which are indicated to be zr) and 
these may well prove useful in supplementing the more 
reliably determined four-phase invariants. For very 
complex structures, however, it will be necessary to 
employ the higher neighborhoods of both the structure 
invariants and seminvariants, e.g. the 13 or 21-magni- 
tude neighborhood of the four-phase invariant or the 
5, 6 or 12-magnitude neighborhood of the two-phase 
seminvariant, etc. 

VI. Concluding remarks 

The conditional probability distribution of the two- 
phase structure seminvariant ~0=~0h+tPk in PT, given 
the four magnitudes [Eh[, IEk[, IEch+k)/2[, [E(h-k)/21, has 
been found. This derivation shows that the methods 
initiated recently (Hauptman 1975a, b) may be carried 
over without essential change to structure invariants 
and seminvariants in general. As anticipated in the 
earlier work, the neighborhood concept plays an essen- 
tial role. It is necessary now to derive the distributions 
appropriate to the higher neighborhoods of the struc- 
ture invariants and seminvariants in the various space 
groups if the most effective application to very complex 
crystal structures is to be made. 
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